Tags
Language
Tags
August 2025
Su Mo Tu We Th Fr Sa
27 28 29 30 31 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Natural Language Processing with Transformers, Revised Edition: Building Language Applications with Hugging Face [Audiobook]

    Posted By: tarantoga
    Natural Language Processing with Transformers, Revised Edition: Building Language Applications with Hugging Face [Audiobook]

    Lewis Tunstall, Leandro von Werra, Thomas Wolf, Tom Beyer (Narrator), "Natural Language Processing with Transformers, Revised Edition: Building Language Applications with Hugging Face"
    English | ASIN: B0DX2LJ4QB | 2025 | MP3@64 kbps | ~13:07:00 | 361 MB

    Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library.

    Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, Lewis Tunstall, Leandro von Werra, and Thomas Wolf use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve.

    ● Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering
    ● Learn how transformers can be used for cross-lingual transfer learning
    ● Apply transformers in real-world scenarios where labeled data is scarce
    ● Make transformer models efficient for deployment
    ● Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments