Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    KoalaNames.com
    What’s in a name? More than you think.

    Your name isn’t just a label – it’s a vibe, a map, a story written in stars and numbers.
    At KoalaNames.com, we’ve cracked the code behind 17,000+ names to uncover the magic hiding in yours.

    ✨ Want to know what your name really says about you? You’ll get:

    🔮 Deep meaning and cultural roots
    ♈️ Zodiac-powered personality insights
    🔢 Your life path number (and what it means for your future)
    🌈 Daily affirmations based on your name’s unique energy

    Or flip the script – create a name from scratch using our wild Name Generator.
    Filter by star sign, numerology, origin, elements, and more. Go as woo-woo or chill as you like.

    💥 Ready to unlock your name’s power?

    👉 Tap in now at KoalaNames.com

    Data-Centric AI: Best Practices, Responsible AI, and More

    Posted By: IrGens
    Data-Centric AI: Best Practices, Responsible AI, and More

    Data-Centric AI: Best Practices, Responsible AI, and More
    .MP4, AVC, 1280x720, 30 fps | English, AAC, 2 Ch | 2h 50m | 322 MB
    Instructor: Aishwarya Srinivasan

    Machine learning typically focuses on producing effective models for a given dataset. In real-world applications, data is messy and improving models is not the only way to get better performance. Data-centric AI (DCAI) is an emerging science that studies techniques to improve datasets, which is often the best way to improve performance in practical ML applications. While data scientists have long practiced this manually via ad hoc trial/error and intuition, DCAI considers the improvement of data as a systematic engineering discipline.

    In this course, Aishwarya Srinivasan covers the data-centric principles that guide our path forward in this new age of AI as we shift from a model-centric approach to a data-centric paradigm. Learn about DCAI—what it is and the value it offers. Aishwarya covers the DCAI workflow; MLOps as part of DCAI; data validation and preprocessing; model validation; bias detection and mitigation; responsible AI; and more.


    Data-Centric AI: Best Practices, Responsible AI, and More